form iridium disulfide having the orthorhombic crystal structure of iridium diselenide,^{4,5} in which part of the iridium may be considered to have the +3 oxidation state. If the ratio of sulfur to iridium is increased to nearly 3:1, then a pyrite structure is formed⁶ in which the +3 iridium is balanced with cation vacancies. At 60 kbars, a mixture of sulfur and iridium (3:1 mole ratio) will react at 1500° to form the same pyrite structure (IrS_{2.9}) observed by Biltz, et al.⁶ (a = 5.62 Å). If, however, sulfur and iridium in a 2:1 mole ratio react at 60 kbars and 1500°, then a new pyrite phase is found $(IrS_{1.9})$ with a = 5.68 Å. Powder diffraction patterns obtained from samples having an initial composition with a mole ratio between 2 and 3 which were allowed to react under the same conditions showed the presence of both pyrite phases.

Nickel diarsenide crystallizes in an "anomalous" marcasite structure⁷ which differs from the Jahn-Teller marcasite structure by having minimal angular distortion about the cation octahedra. In this sense the "anomalous" marcasites are like the pyrites; however, they differ from the pyrites in that the marcasite structure is a less dense packing arrangement. These factors suggest that materials having the "anomalous" marcasite structure might be induced to form the pyrite structure when synthesized under pressure. An intimate mixture of powdered nickel and arsenic in a 1:2.2 mole ratio after reaction at 60 kbars and 1400° was cooled at pressure to room temperature over a period of 0.5 hr. After the release of the pressure a metallic gray material was obtained which gave the X-ray reflections (Table I) of the cubic pyrite structure, a =5.77 Å. The calculated density, 7.21 g cm⁻³, may be compared with the pycnometric density of 7.15 \pm 0.10 g cm^{-3} . These results suggest that other materials possessing the "anomalous" marcasite structure may also be synthesized in the pyrite arrangement under pressure.

TABLE I

SPACING AND	INDEXING C	of the F	REFLECTIONS				
OF CURE NEWER DECREDOR							

OF-CUBIC NICKEL DIARSENIDE"								
<u>d</u>	<u>hkl</u>	Intensity	<u>d</u>	<u>hk1</u>	Intensity			
2.86	200	W	1.070	432	м			
2.56	210	5	1.051	521	м			
2.34	211	S	1.019	440	м			
2.03	220	w	0.961	600	W			
1.98	221	VW	0.949	610	W			
1.73	311	vs	0.936	611	м			
1.66	222	W	0.911	620	VW			
1.59	230	M	0.880	533	м			
1,54	321	S	0.870	622	VW			
1.435	400	W	0.860	630	м			
1,285	420	w	0.851	631	м			
1.255	421	м	0.832	444	VW			
1,225	332	W	0.800	640	W			
1.174	422	¥	0.792	641	5			
1.109	511	M	0.785	552	S			

^a Copper $K\alpha_1$ nickel-filtered radiation employed with a Norelco camera of diameter 114.6 mm.

Acknowledgments.—The author wishes to acknowledge the able assistance of R. D. Kieft, J. S. Pirog, and

- (6) W. Biltz, J. Laar, P. Ehrlich, and K. Meisel, Z. Anorg. Allgem. Chem., 233, 263 (1937).
- (7) F. Hulliger and E. Mooser, "Progress in Solid State Chemistry," Vol.
 2, H. Reiss, Ed., Pergamon Press Inc., New York, N. Y., 1965, pp 330-377.

L. M. Osika in making the X-ray diffraction patterns and analyses and also helpful discussion with Dr. John S. Kasper. Dr. Lester Bronk performed the thermogravimetric measurement.

> Contribution from the General Electric Research and Development Center, Schenectady, New York

The Formation of the Skutterudite Phase in the Cobalt-Phosphorus System

By Ronald A. Munson¹ and John S. Kasper

Received August 7, 1967

Relatively few compounds occur in the skutterudite structure (space group $T_h^5(Im3)$), but the existence of IrP₃ and RhP₃ as well as CoSb₃ and CoAs₃ in this structure strongly suggests that CoP₃ ought to have this arrangement also. Biltz and Heimbrecht,² however, were unsuccessful in preparing cobalt triphosphide with the skutterudite structure at low pressures.

We have been able to prepare the skutterudite phase of cobalt phosphide by allowing powdered cobalt to react with phosphorus in a 3:1 mole ratio at a pressure of 60 kbars and 1400°. However, this product also contained another unidentified compound of cobalt and phosphorus. The pure skutterudite phase could be obtained only when the ratio of phosphorus to cobalt was in the vicinity of 4. Chemical analysis of the pure skutterudite phase established the empirical formula $CoP_{3.90}$ (32.8% cobalt). X-Ray reflections using cobalt $K\alpha$ iron-filtered radiation indicated the bodycentered-cubic structure, a = 7.711 Å. The calculated density based on CoP_4 is 3.97 g cm⁻³ which may be compared with the pycnometric density of 4.04 ± 0.10 g cm⁻³. Initial structure factor calculations indicate agreement between the intensities listed in Table I

SPACING AND INDEXING OF THE REFLECTIONS							
OF CUBIC COBALT PHOSPHIDE							
<u>hkl</u>	Intensity	<u>d</u>	<u>hk1</u>	Intensity			
101	MN	1.190	541	VW			
200	M	1.162	622	MW			
211	W	1,136	631	MR			
220	м	1,113	444	MH			
310	S	1,090	710	W			
222	MW	1.069	640	м			
321	м	1.049	721	¥			
400	w	1.030	642	¥			
330	W	1.013	730	м			
420	5	0.980	732	м			
332	¥	0.964	800	м			
422	MS	0,950	741	¥			
510	M	0.935	820	S			
530	¥	0.921	653	W			
600	VW	0.909	822	S			
620	MW	0.896	831	S			
	SPACING 2 01 <u>hk1</u> 101 200 211 220 310 222 321 400 330 420 330 420 530 530 600 620	SPACING AND INDEXIN- OF CUBIC COB. hkl Intensity 101 MW 200 M 211 W 220 MW 310 S 221 MW 321 M 400 W 330 W 420 S 332 W 422 MS 510 M 530 W 600 VW 620 MW	SPACING AND INDEXING OF THE K OF CUBIC COBALT PHOSPH hkl Intensity d 101 Mr 1.190 200 M 1.162 211 W 1.136 210 M 1.113 310 S 1.090 221 Mr 1.049 400 W 1.030 330 W 1.013 420 S 0.980 332 W 0.954 422 MS 0.955 510 M 0.921 600 VW 0.921 600 VW 0.921 600 VW 0.896	SPACING AND INDEXING OF THE REFLECTION OF CUBIC COBALT PHOSPHIDE hkl Intensity d hkl 101 Mr 1.190 541 200 M 1.162 622 211 W 1.136 631 200 M 1.113 444 310 S 1.090 710 222 MS 1.049 721 400 W 1.030 642 303 W 1.013 730 420 S 0.980 732 332 W 0.9564 800 422 MS 0.9564 800 422 MS 0.951 820 530 W 0.921 653 600 VW 0.909 822 600 VW 0.921 653 600 VW 0.896 831			

TABLE I

and the assumption of random distribution of six cobalt atoms among the eight 8e skutterudite positions.

These preparations were carried out in the "belt"

(1) Bureau of Mines, Metallurgy Research Center, College Park, Md. 20740.

(2) W. Biltz and M. Heimbrecht, Z. Anorg. Allgem. Chem., 241, 349 (1939).

⁽⁴⁾ L. B. Barricelli, Acta Cryst., 11, 75 (1958).

⁽⁵⁾ F. Hulliger, Nature, 204, 644 (1964).

superpressure apparatus³ using a cell constructed of sodium chloride with a graphite heater. The cell was calibrated at room temperature with the bismuth 25.5and 27-kbar and the barium 58-kbar transformations. Temperatures, uncorrected for pressure, were determined from a calibration of the high-pressure cell with a Pt-Pt-10% Rh thermocouple.⁴

Acknowledgment.—The authors wish to acknowledge the able assistance of R. D. Kieft and M. J. Moore in making the X-ray diffraction patterns and analyses. W. T. Doyle made the cobalt analysis.

(3) H. T. Hall, Rev. Sci. Instr., 31, 125 (1960).

(4) NOTE ADDED IN PROOF.—S. Rundqvist and E. Larsson, Acta Chem. Scand., 13, 551 (1959), report that CoP_3 (a = 7.706 Å) is isostructural with CoAs₃.

Contribution from Midwest Research Institute, Kansas City, Missouri 64110

Trifluoromethylsulfinyl Fluoride¹

By Edward W. Lawless and Luedric D. Harman

Received September 11, 1967

Trifluoromethylsulfinyl fluoride and other alkyl- or arylsulfinyl fluorides were reported² as minor by-products in the synthesis of the corresponding RSF₃ compounds, as a result of reaction with the glass apparatus or traces of moisture. Supporting data were given for benzenesulfinyl fluoride which was obtained² in good yield by the reaction of phenylsulfur trifluoride and benzaldehyde. The CF₃SF₃ was synthesized² by the reaction of gaseous CS₂ or (CF₃S)₂CS with AgF₂. Both reactions were exothermic and gave a mixture of products: SF₄, CF₃SF₃, CF₃SF₅, and SF₆ from CS₂; and CF₃SF₃, (CF₃)₂S₂, CF₃SFO, and CF₃SF₅ from (CF₃-S)₂CS. We wish to report improved syntheses of CF₃SF₃²⁻⁴ and CF₃SFO and some properties of the latter.

In the present investigation, we have found that liquid bis(trifluoromethyl) disulfide will, in fact, readily react further with AgF₂. The products are CF₃SF₅, CF₃SF₅, and CF₃SFO. The formation of CF₃SF₅ can be minimized by allowing the reactants to warm from -10 to 25° over several hours and by avoiding a large excess of AgF₂.⁵ The formation of CF₃SFO can be minimized by using rigorously anhydrous conditions and passivated, glass-free apparatus.

Trifluoromethylsulfinyl fluoride was obtained in good yield by simply storing small quantities of the product mixture in a glass bulb until all of the reactive CF₃SF₃ was eliminated by conversion to CF₃SFO and SiF₄. The CF₃SFO was purified by vacuum-line fractionation and identified by its gaseous molecular weight, ¹⁹F nmr spectrum, mass spectrum, and an infrared spectrum, Figure 1, which is consistent with the proposed structure. The CF3SFO is a white solid and colorless liquid or gas having a boiling point of approximately -9° . It appeared to be thermally stable in stainless steel at 135° and was unreactive with mercury at 25°. Gaseous CF₃SFO was stored in dry glass for 2 weeks without noticeable decomposition, but after 3 months in normal laboratory light all of the CF₃SFO was destroyed. Instability of sulfinyl fluorides in glass was previously noted.² The CF₃SFO is slowly hydrolyzed by water vapor at 25° with destruction of the CF₃ group. No reaction was observed between CsF and CF₃SFO at 120 or 135° and no complex which was stable at room temperature was formed when CF₃SFO and AsF₅ were held at -78° . The addition of F₂ to CF₃SFO at 25° produced a number of degradation products, but CF₃SO₂F and CF₄ were the major products observed from the reaction at -78° .

Figure 1.-Infrared spectrum of trifluoromethylsulfinyl fluoride.

Experimental Section

Preparation .- Silver difluoride (Alfa Inorganics, Inc.) and $(CF_3)_2S_2$ (Peninsular ChemResearch, Inc.) were allowed to react in a series of 11 runs utilizing 1-2 g of $(CF_3)_2S_2$ per run. The mole ratio of AgF_2 to $(CF_3)_2S_2$ was varied from 12:1 to 2:1. A valved 75-ml stainless steel cylinder was charged with AgF₂ in a drybox and the $(CF_3)_2S_2$ was condensed in at -196° in a vacuum line. Each reactant mixture was then held at a selected temperature in the range -- 78-50° for a time in the range 116-0.5 hr. Products were fractionated or transferred in either a glass or an all-metal and Kel-F vacuum line operating at <0.01 mm. In a typical run, the reactor was charged with an 8:1 mole ratio of AgF_2 to $(CF_3)_2S_2$, placed in a dewar containing ice, and allowed to warm to room temperature overnight. Infrared analysis of a small sample of the volatile products showed that the major product ($\sim 70\%$) was CF₃SF₃ with smaller amounts of CF₃SFO and CF3SF5 present. Quantitative 19F nmr analysis (based on integration of the three CF₃ peaks) at -40° on all of the remaining volatile products gave the composition: 60% CF3SF3, 28% CF3SFO, 10% CF3SF4, and ca. 2% SiF4. No residual $(CF_3)_2S_2$ was detected by either method. However, reaction

⁽¹⁾ This work was supported by the United States Air Force under Contract AF 33(615)-3954.

⁽²⁾ W. A. Sheppard, J. Am. Chem. Soc., 84, 3058 (1962).

⁽³⁾ E. A. Tyczkowski and L. A. Bigelow, *ibid.*, **75**, 3523 (1953).

⁽⁴⁾ R. Dresdner, *ibid.*, **79**, 69 (1957).

⁽⁵⁾ Once formed $CF_{8}SF_{8}$ is resistant to further fluorination by AgF_{2} at 35°.